Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

El Fatmi Abdeljalil, ${ }^{\text {a }}$ Ben Larbi Najib, ${ }^{\text {b }}$ Kerbal Abdelali, ${ }^{\text {a }}$ Brahim El Bali ${ }^{\text {c }}$ and Michael Bolte ${ }^{{ }^{\text {* }}}$
${ }^{\text {a }}$ Laboratoire de Chimie Organique, Faculté des Sciences Dhar Mehraz, Fés, Morocco, ${ }^{\text {b }}$ Départment de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fés, Morocco, ${ }^{\text {'Laboratory of Mineral Solid }}$ Chemistry, Department of Chemistry, Faculty of Sciences, PO Box 624, 60000 Oujda, Morocco, and ${ }^{\mathbf{d}}$ Institut für Organische Chemie,
J.-W.-Goethe-Universität Frankfurt, Marie-CurieStrasse 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.100$
Data-to-parameter ratio $=15.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

N, N^{\prime}-Bis(3,5-dimethyl-1H-pyrazol-1-ylmethyl)piperazine

The molecule of the title compound, $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{6}$, is located on a crystallographic centre of inversion; as a result, there is just one half-molecule in the asymmetric unit. The piperazine ring adopts an ideal chair conformation. The substituents at the piperazine N atoms are in equatorial positions.

Comment

A perspective view of the the title compound, (I), is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 5.27 plus one update; MOGUL Version 1.1; Allen, 2002). The piperazine ring adopts an ideal chair conformation. The sum of the bond angles at the piperazine N atoms (328.48°) clearly shows the pyramidal geometry. The dimethylpyrazolylmethyl residues are attached to the piperazine N atoms in equatorial positions. There are no significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts. The molecules in the crystal structure are held together by van der Waals interactions only.

(I)

Experimental

The title compound was prepared according to the procedure described by Ratilainen et al. (1999).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{6} \\
& M_{r}=302.43 \\
& \text { Orthorhombic, } P b c a \\
& a=9.6944(9) \AA \\
& b=12.1761(11) \AA \\
& c=13.7141(12) \AA \\
& V=1618.8(3) \AA^{3} \\
& Z=4 \\
& D_{x}=1.241 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 14 February 2006
Accepted 15 February 2006

organic papers

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: none
16864 measured reflections
1560 independent reflections

1319 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=25.8^{\circ}$
$h=-11 \rightarrow 11$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0595 P)^{2}\right. \\
& +0.1979 P]
\end{aligned}
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.20$ e \AA^{-3}
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{N} 11-\mathrm{C} 13^{\mathrm{i}}$	$1.4563(17)$	$\mathrm{N} 11-\mathrm{C} 12$	$1.4601(16)$
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 13^{\mathrm{i}}$	$113.99(10)$	$\mathrm{C} 13^{\mathrm{i}}-\mathrm{N} 11-\mathrm{C} 12$	$110.19(10)$
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 12$	$114.30(10)$		
$\mathrm{C} 13^{\mathrm{i}}-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$58.69(15)$	$\mathrm{C} 12^{\mathrm{i}}-\mathrm{C} 13^{\mathrm{i}}-\mathrm{N} 11-\mathrm{C} 12$	$-58.89(14)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 11^{\mathrm{i}}$	$-58.61(15)$		

Symmetry code: (i) $-x+1,-y+1,-z+1$.

H atoms were located in a difference electron-density map, but they were positioned geometrically and refined with fixed individual displacement parameters [$U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C)] using a riding model, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$. The methyl groups were allowed to rotate but not to tip.

Figure 1
Perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 50% probability level. Atoms labelled with the suffix a were generated by the symmetry code $(1-x$, $1-y, 1-z$).

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Ratilainen, J., Airola, K., Fröhlich, R., Nieger, M. \& Rissanen, K. (1999). Polyhedron, 18, 2265-2273.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

